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Audio source separation

Task: Recover sources from mixtures

Example: Music instrument separation:
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Current state of the art [5, 3, 1]

Training on multitrack datasets

Neural network

Discriminative, MSE loss
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Current state of the art [5, 3, 1]

Training on multitrack datasets (small ⇒ overfitting!)

Neural network

Discriminative, MSE loss



Motivation State of the art Proposed approach Experiment: Singing voice separation Discussion and summary

Our goal

⇒ How to also learn from unpaired mixtures and sources?

Random mixing ignores source correlations [4, 2]
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Theoretical framework
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Theoretical framework

Intuition
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Theoretical framework

Derivation of unsupervised loss

For optimal separator: qφ(sk |m) = p(sk |m)

Necessary condition for optimal separator

Loss: Minimise divergence between source outputs:
Lu =

∑K
k=1D[outqkφ||pks ]
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Theoretical framework

Derivation of unsupervised loss

For optimal separator: qφ(sk |m) = p(sk |m)
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Overall separator output = Source distribution
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Theoretical framework

Overall approach

Supervised loss: MSE between estimate and ground truth

Unsupervised loss:

Lu =
∑K

k=1 D[outqkφ||pks ]
Ladd: MSE between sum of source estimates and mixture

Total loss:
L = Ls + αLu + βLadd
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Implementation using GANs

Divergence minimization with GANs

Discriminator estimates divergence D between generator and
real distribution

Generator minimises divergence D

Our separator is a conditional generator

⇒ We use one discriminator per source to estimate the
Wasserstein distance W [outqkφ||pks ]
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Experimental setup

Avoids dataset bias

Supervised and semi-supervised training with early stopping

U-Net as separator, DCGAN as discriminator
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Results
Performance
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Results
Qualitative
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⇒ Discriminator appears to work

More perceptual loss function?
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Summary

Current SotA methods only use multi-track data

Our approach also uses solo source recordings

Performance improvement in singing voice separation
experiment

More perceptual loss? (seeks posterior modes, not means)
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End

Code available at
https://github.com/f90/AdversarialAudioSeparation

Thank you for your attention!

https://github.com/f90/AdversarialAudioSeparation
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